
Arrays, variables, axes and
missing values

What is geospatial data?

Thinking about data…

Axes

Time, Level, Lat,
Lon, other….

Data arrays

[0,0,0,1,1,1,0,0,,101,
01,01,1010] x lots

Global Info
(metadata)

Source, institute,
dataset id, history
of conversions…

Metadata specific
to Axes and Data

Some philosophy behind the design

• The basic unit of data in CDMS is the variable – a
multidimensional array, augmented with a domain
and with metadata.

• The domain describes the spatial location and
temporal information associated with the array.

• The metadata associated with a variable consists of
a collection of attribute-value pairs (such as
units=“m”).

• A variable may be stored in a single physical file (of
varying formats) or in a collection of files, called a
dataset.

Some philosophy behind the design

• In CDAT, variables can be used much like arrays. i.e.
you can use them directly in calculations as you
would in IDL, Matlab etc.

• By working with CDMS variables for computation the
associated domain and metadata information is
carried along with the computation.

• Benefit in data readability/portability – easily
interpreted by software/people later on. E.g. plotters
can realise map projections.

The hierarchy of arrays (into variables)

• To be truly extensible and interoperable, CDAT
provides a hierarchy of representations for data
arrays (allowing interfacing with non-CDAT
packages):

1. Numeric Array: a multidimensional array, all elements have the
same data type (real, integer etc.). From Numeric Python (numpy).

2. Masked Array (MA): A Numeric array with an optional missing
data mask. Operations on these compute the mask of the result.

3. Masked Variable (MV): Masked array with domain and metadata.
A masked variable in memory is referred to as transient variable
and a masked variable in a dataset is called a file variable.

Some philosophy behind the design

The Numeric module

• This brings us to a fundamental underlying
component of CDAT: The Numeric module

• This Package brings real arithmetic into Python,
Numeric array are similar to C (or Fortran) arrays,
they also re-introduce the single precision int and
float.

• Documentation can be found at:
http://www.pfdubois.com/numpy/html2/numpy.html

• NOTE: On your pythonic travels you may come
across numarray, a next generation of Numeric,
with bells and whistles!

http://www.pfdubois.com/numpy/html2/numpy.html

Working with Numeric arrays

• Creating a Numeric array is easy
import Numeric
a=Numeric.array([1,2,3,4,5,6,7,8,9,10,11,12])
b=Numeric.array([[1.,2,3],[4,5,6],[7,8,9],[10,
11,12]], ‘f’) # ‘f’ designates float type.

• To determine the shape/rank (number of dimensions)
of an array:
print a.shape # (12,)
print b.shape # (4,3)
print Numeric.rank(b) # 2

Numeric array types

• To determine the “type” of an array:
print a.typecode() # returns ‘l’ i.e “long”
print b.typecode() # ‘d’ i.e. “double”

To convert an array type:
c=a.astype(‘d’)

Available typecodes: (Numeric.
Complex, Complex0, Complex8, Complex16, Complex32,
Complex64, Float, Float0, Float8, Float16, Float32, Float64, Int,
Int0, Int8, Int16, Int32, UnsignedInteger, UnsignedInt8,
UnsignedInt16, UnsignedInt32)

• To determine if an object is a Numeric array:
isinstance(b,Numeric.ArrayType)
type(b)==Numeric.ArrayType

Array operations

• Operations can be applied directly and propagate through all
dimension (NO NEED for LOOPS):

>>> import Numeric
>>> a=Numeric.array([2,3,4,5], "f")
>>> b=Numeric.array([9,8,7,6], "f")

>>> c=a+b
>>> c
[11., 11., 11., 11.,]

• Most function are applied to the first axis (0) by default but can
be applied to another axis by passing an extra argument:
c=Numeric.average(b) # [5.5,6.5,7.5]
c=Numeric.average(b,1) # [2.,5.,8.,11.] # Average

after axis “1”

Numeric - Some useful functions
Functions include:
• average(array)
• sum(array) # sums the contents of an array
• where(c1, array1, array2) # or (c1, int, int)

e.g. To convert all values of 50 to -9999 in an array:
where(greater(arr,50), -9999, arr)

• greater, less, greater_equal, less_equal, equal, not_equal
• logical_and, logical_or, logical_not
• absolute, sqrt, power, exp, log, log10
• sin, cos, tan, arcsin, arctan, etc…
• arrayrange(first, last, stride, typecode)
• maximum(a, b), minimum(a, b) # returns max or min of a and b

>>> print maximum(array([2,3,100]), 50)
[50, 50,100,]

Numeric - More useful functions

• sort(x) – sorts contents of array
• ravel(x) – returns array flattened to 1-dimension (like “x.flat”)
• rank(x) – gets rank of array
• resize (x, new_shape) - returns a new array with specified shape.
• reshape (x, new_shape) - returns a copy of x with the given new

shape.
• transpose (a, axes=None) - performs a reordering of the axes

depending on the tuple of indices axes; the default is to reverse
the order of the axes.

• compress(condition, x, dimension = -1) - those elements of x
corresponding to those elements of condition that are "true".
condition must be the same size as the given dimension of x.

• concatenate (arrays, axis=0) concatenates the arrays along the
specified axis.

• argsort()/searchsorted()
• take()

Numeric arrays functions

• The following function are tied to Numeric arrays
objects:
a.byteswapped() # switch between little and big endian
a.copy()
a.iscontiguous() # are all elements contiguous in

memory ?
a.itemsize() # Return the size in bytes of a single element

of the array
a.resize() # Do NOT use, use the resize function from

Numeric
a.savespace(1/0) # Will preserve the type of the array no

matter what or turn that off
a.spacesaver() # is the above function on ?
a.tolist() # converts array to list type
a.toscalar() # Return first data point
a.typecode() # Return typecode of the array

Undefined ‘Missing’ Values: Masked Array (MA)

• Unfortunately in our field, most of the time the dataset
we’re dealing with is “incomplete” either because it
contains observations or simply because no data
exist at a specific point (interpolation below ground,
ocean model not computing over land, …)

• In order to overcome this deficiency, the Numeric
module is supplemented with a similar Package: MA
which stands for Masked Array.

• MA has most of numeric functionalities but also
knows how to handle missing values.

MA-specific functions (1)

MA._get_print_limits()/MA._set_print_limits() #
prints the number of values included 300 default

MA.getmask(array) # Return mask associated with array (None if
no mask)

MA.masked_greater(array,array2 or value), … # Mask
array where array is greater/less… than array2 or value
passed

MA.masked_inside/masked_outside(array,a1/v1,a2/v2)
creates an array with values inside/outside the closed
interval [v1, v2] masked. v1 and v2 may be in either order.

MA-specific functions (2)
MA.masked_where(condition, data, copy=1)

Creates a masked array whose shape is that of condition,
whose values are those of data, and which is masked where
elements of condition are true. Condition can be something
like “MA.greater(data, value)”.

MA.masked_equal/masked_values(data, value,
rtol=1.0000000000000001e-05, atol=1e-08, copy=1,
savespace=0)

Creates a masked array where value=value; mask is None
if possible. If copy==0, and otherwise possible, result
may share data values with original array.

Let d = filled(data, value). Returns d masked where:
abs(data-value)<=atol + rtol * abs(value)

MA.mask_or(a1,a2)

Create a mask using a1 values or a2 values (if a1 value is
None). Use None if they are both None.

Adding metadata: Axes and Attributes

• Being able to deal with missing values isn’t
necessarily enough. In our field most of the time we
need to know “more” about the data, the domain
spanned (spatially and in time), some specific
attribute (name, history, etc…)

• All these are called “metadata”.

• CDAT manages metadata according to the Climate
and Forecasts (CF) Metadata Convention for
NetCDF. This provides a set of rules for producing
well-formed data files.

Why the CF Metadata Convention?

• Standardisation is a good thing!
• Various NetCDF conventions but CF is the most

appropriate to our community, and is being actively
developed.

• Designed to promote the processing and sharing of
data (and metadata).

• The standard_name table allows users of data from
different sources to decide which quantities are
comparable.

• Standard descriptions for spatio-temporal axes allows
software to make intelligent decisions with missing
values, plotting, diagnostics and sub-setting.

Advice on well-formed CF-compliant NetCDF

• For guidance on writing well-formed NetCDF (which CDAT will
mainly do for you) see Unidata’s web page:
http://my.unidata.ucar.edu/content/software/netcdf/BestPractices.html

• It provides advice on:
– Coordinate systems
– Variable groupings
– Variable attributes
– Calendar Date/Time
– and more…

• But the CF document should be your guiding light:
http://www.cgd.ucar.edu/cms/eaton/cf-metadata/index.html

http://my.unidata.ucar.edu/content/software/netcdf/BestPractices.html
http://www.cgd.ucar.edu/cms/eaton/cf-metadata/index.html

Adding metadata: Enter the Masked Variable (MV)

• Numeric and MA do not know about metadata,
therefore came the need for a new module (Masked
Variable (MV)) which can retain such information.

• MV is defined in the cdms package so masked
variables are available when you import cdms.

• Masked Variables have additional functionalities tied
to the cdms package, such as getAxis, getLatitude,
getGrid, regrid, subdomain extraction, etc…

3 Types of variables

• A variable can be obtained either from a file, a
collection of files (a dataset), or as the result of
computation. Correspondingly there are three types
of variables in CDAT:

– A file variable is a variable associated with a single data
file. Interaction involves I/O operations.

– A dataset variable is a variable associated with a collection
of files or dataset (normally described by one CDML file).
Dataset variables are read-only.

– A transient variable is an ‘in-memory’ object not associated
with a file or dataset. You can compute transient variables
from other variables or build them yourself.

The MV Module in action

MV also includes a set of arithmetic
functions such as average, max, min
etc.

Interrogating a CDAT file/dataset

• You have already seen how to open a CDAT file and
extract variables. Here are some other useful things
you can get from a file/dataset object:

Remember: you can list the methods using “dir(<object>)”.
f=cdms.open(‘afile’) # Assign “f” as cdms file object
f.id # returns the file/dataset name
f.grids # returns the grids in a file
f.variables # returns the variables in a file
f.axes # returns the axes in a file
f.attributes # returns all the attributes (including axes) in a file
f.getdimensionunits('longitude') # returns the units of the

dimension
f.getVariable(‘temp‘) # returns a variable from a file
f.listglobal() # returns a list of global file attributes
f.getglobal(‘source’) # returns the value of the specified

attribute

Selecting variables from a file with () or []

• The commonest way to get to variables in a file is to call the file
object using normal brackets:

f=cdms.open(‘afile’)
var=f(‘temperature’)

• When dealing with enormous files (or datasets – made up of
potentially 100s of 1000s of files) you don’t want to extract all
the data (memory won’t let you), so you need a way of finding
out about a variable to decide what you need.

• Use square brackets to extract the metadata* only (i.e. the
attributes, grids, axes etc):

var_metadata=f[‘temperature’]

* This is actually a pointer to the file variable.

Re-ordering variable axes on input

• Here is a useful piece of functionality - re-ordering the axes when
you read a variable from a file:
– standard “tzyx” order (as held in most files):
>>> f('r')
r array(

array (1,21,73,144) , type = f, has 220752 elements)

– “xytz” ordering:
>>> f('r', order="xy")

r array(
array (144,73,1,21) , type = f, has 220752 elements)

– “ytxz” ordering:
>>> f('r', order="ytxz")
r array(
array (73,1,144,21) , type = f, has 220752 elements)

Interrogating the variable metadata (1)

• From your variable object you might want to find out:
– What axes is this variable defined against?
>>> var.getAxisList() # to see all of them
>>> var.getLongitude() # longitude only
>>> var.getLongitude()[:] # longitude values
var.getTime(), var.getLevel() – similar
>>> var.getGrid() # grid (if appropriate)

– What shape is the variable?
>>> var.shape

– What is the size (number of values) and rank of this
variable?
>>> var.size() ; var.rank()

Interrogating the variable metadata (2)

– What is the missing value?
>>> var.getMissing()

– What attributes exist for this variable?
>>> var.listattributes()

– What is the value of attribute ‘name’?
>>> var.getattribute(‘name’)

– What is the axis order of this variable?
>>> var.getOrder()

– What is all the metadata for this variable?
>>> var.attributes

Interrogating axes and grids (1)

• From your axis object you might want to find out:
– What does this axis look like?
>>> ax=var.getAxis(2)
>>> ax

id: latitude
Designated a latitude axis.
units: degrees_north
Length: 73
First: -90.0
Last: 90.0
Other axis attributes:

axis: Y
Python id: 40ba476c

Interrogating axes and grids (2)

– What are the units?
>>> ax.units

– What are the actual values?
>>> ax.getValue() # or ax[:]

– Is it time? Is it latitude?
>>> ax.isTime() ; ax.isLatitude()

– What are the bounds (if they exist)?
>>> ax.getBounds()

– What is the key metadata for this axis?
>>> ax.listall()

– Is it a circular axis (i.e. longitude wraps around itself)?
>>> ax.isCircular()

Special methods on time axes

• Time axes have a number of specific methods:
– Show axis as component time list?
>>> ax.asComponentTime()

– Show axis as relative time list?
>>> ax.RelativeTime()

– What is the calendar?
>>> ax.getCalendar()

Sub-setting and squeezing the actual data

• As we’ve already seen, when you want to subset
data you can just specify the spatial and temporal
region you want (and you can keep doing it…):
>>> import cdms
>>> f=cdms.open(‘file1.nc’)
>>> var=f(‘temp’, time=(“1999-1”, “1999-2”))
>>> slab1=var(level=16, latitude=(0, 90))
>>> slab2=slab1(latitude=(30,40))
>>> slab3=slab2(longitude=2)
Note that you still have a 4-D variable,
You might want to remove the singular axes:
>>> slab4=slab3(squeeze=1)
squeeze also comes in handy when plotting

Using “slice” to subset

• Python has an object called a slice that is made up
of three integers:
– start
– end
– step

• Invoke a slice with:
– slice([start,] stop[, step])
s=slice(0, 100, 5) # 0 to 100 step 5
s2=slice(50) # 0 to 50 step 1

Using “slice” to subset

• Why are slices useful in CDAT? Use them to sub-
select data:

– When grabbing data from a file or dataset:
x=f(‘slhf’, time=slice(0, 1200, 12),

lat=slice(0,180,5))

– When grabbing data from a variable:
x_subset=f(‘slhf’, lon=slice(0,360,10))

– Both of these return a transient (in memory) variable.

Selectors – another way of sub-setting

• The Selector class lives in the cdms.selectors module. It allows
you to pre-define a selector that can then be re-used in code:
from cdms.selectors import Selector
sel1 = Selector(time=(’1979-1-1’,’1979-2-1’),

level=1000.)
x1 = v1(sel1)
x2 = v2(sel1)

• Pre-defined selector slices for axes:
from cdms import timeslice, levelslice
x = hus(timeslice(0,2), levelslice(16,17))

• Or you can use the domain selectors in cdutil:
from cdutil.region import *
NH=NorthHemisphere=domain(latitude=(0.,90.))
SH=SouthHemisphere=domain(latitude=(-90.,0.))

Writing as opposed to reading?

• We have just seen a number of methods for examining existing
metadata. To create your own metadata and data you’ll need:
cdms.createAxis()
cdms.createVariable()

• Then many of the methods we’ve seen have opposites:
var.setMissing(miss_value) # instead of ‘get’
var.setattribute(name, value) # “ “ “ “
ax.setBounds(newBounds) # “ “ “ “

ax.setCalendar(newCal) # “ “ “ “
ax.designateLatitude() # instead of ‘is’

• Use “dir(var)” and “dir(ax)” to list the methods and then
“help(var.methodname)” to see how it should be used.

Creating a good axis from scratch

• Create an array from a list or Numeric:
values=range(0,360,5)
lon=cdms.createAxis(values)

• You could stop here, but we like metadata! So
designate it:
lon.designateLongitude()

• And name, units…
lon.id=“longitude”
lon.standard_name=“longitude”
lon.units=“degrees_east”
lon.comment=“This really is longitude!”

Creating a CDMS variable (1)

• You need to use cdms.createVariable():

cdms.createVariable(array,
typecode=None, copy=0, savespace=0,
mask=None, fill_value=None,
grid=None, axes=None,
attributes=None, id=None)

• See the CDMS manual for a full explanation of the
options:

http://esg.llnl.gov/cdat/cdms.pdf

http://esg.llnl.gov/cdat/cdms.pdf

Creating a CDMS variable (2)

• Having created your axes:
Let’s say “arr” is an array converted from your
fortran programme.
>>> print arr.shape # to check
(12, 60, 181, 360) # time/lev/lat/lon
You have defined some axes as well...
>>> print len(ti), len(depth), len(lat), len(lon)
12 60 181 360 # Good, they match!

• Let’s set up an attribute dictionary in advance:
>>> atts=={"long_name":"Atlantic meridional

overturning streamfunction", "name":"Atlantic
meridional overturning streamfunction",
"units":"sverdrups"}

• Then create the transient variable:
>>> amos=cdms.createVariable(arr, id=“amos”,

axes=[ti, depth, lat, lon],
attributes=atts, fill_value=1.e-20)

Missing values and CF

And a word about missing values:
• The CF convention says that we should encode

missing values with the “_FillValue” attribute.
• In python the leading underscore makes the attribute

“private” and so it doesn’t get automatically written to a
file with the variable.

• CDAT therefore uses the now deprecated (in CF)
“missing_value”:
>>> var.setMissing(1.e-20)
>>> print var.missing_value
1.e-20

• Note that you can also use valid_min, valid_max and
valid_range for missing ranges.

	Arrays, variables, axes and missing values
	What is geospatial data?
	Some philosophy behind the design
	Some philosophy behind the design
	The hierarchy of arrays (into variables)
	Some philosophy behind the design
	The Numeric module
	Working with Numeric arrays
	Numeric array types
	Array operations
	Numeric - Some useful functions
	Numeric - More useful functions
	Numeric arrays functions
	Undefined ‘Missing’ Values: Masked Array (MA)
	MA-specific functions (1)
	MA-specific functions (2)
	Adding metadata: Axes and Attributes
	Why the CF Metadata Convention?
	Advice on well-formed CF-compliant NetCDF
	Adding metadata: Enter the Masked Variable (MV)
	3 Types of variables
	The MV Module in action
	Interrogating a CDAT file/dataset
	Selecting variables from a file with () or []
	Re-ordering variable axes on input
	Interrogating the variable metadata (1)
	Interrogating the variable metadata (2)
	Interrogating axes and grids (1)
	Interrogating axes and grids (2)
	Special methods on time axes
	Sub-setting and squeezing the actual data
	Using “slice” to subset
	Using “slice” to subset
	Selectors – another way of sub-setting
	Writing as opposed to reading?
	Creating a good axis from scratch
	Creating a CDMS variable (1)
	Creating a CDMS variable (2)
	Missing values and CF

